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Abstract. We revisit the theoretical predictions for anomalous radiative decays of pseudoscalar and vec-
tor mesons. Our analysis is performed in the framework of the Nambu–Jona–Lasinio model, introducing
adequate parameters to account for the breakdown of chiral symmetry. The results are comparable with
those obtained in previous approaches.

1 Introduction

The analysis of vector and axial-vector meson physics rep-
resents a nontrivial task from the theoretical point of view.
This is basically due to the characteristic energy scales
at which these particles become manifest, namely an in-
termediate range between low energy hadron physics and
the high energy region where QCD can be treated pertur-
batively. In order to deal with the subject, one possible
approach is to start from an effective meson Lagrangian;
another possible way is to derive the corresponding effec-
tive interactions from QCD-inspired fermionic schemes.

In the last two decades, the development of chiral ef-
fective models [1] has provided a profitable framework to
analyze various phenomena related to the physics of vec-
tor and axial-vector mesons [2–4]. These models have been
built taking into account the symmetries of QCD, together
with the so-called axial anomaly introduced through the
Wess-Zumino-Witten (WZW) [5] effective action. As an
alternative approach, the analysis of spin 1 meson physics
can be performed by starting with the Lagrangian pro-
posed by Nambu and Jona–Lasinio (NJL) [6]. This La-
grangian is based on 4-fermion interactions, showing the
chiral symmetry of QCD, and leads to an effective theory
for scalar, pseudoscalar, vector and axial-vector mesons af-
ter proper bosonization. The effective meson Lagrangian
can be obtained by constructing a generating functional,
and evaluating the real and imaginary parts of the fermion
determinant [7].

In this work we follow this second approach, studying
the phenomenology of spin 1 mesons in the framework of
the NJL model. We propose a fermionic Lagrangian that
shows an approximate U(3)L ⊗ U(3)R chiral symmetry,
explicitly violated by current quark masses, as is the case
in QCD in the limit of a large number of colours NC . In
particular, we revisit the predictions given by this model
for anomalous radiative decays of vector mesons, taking
into account the explicit breakdown of the SU(3) flavor
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symmetry to SU(2) isospin symmetry with the assump-
tion mu = md �= ms. We perform the bosonization of the
NJL theory by carrying out an expansion of the fermion
determinant in terms of the meson fields. This gives rise
to a set of 1-loop Feynman diagrams [8–12] from which
one can derive the relevant effective meson interactions.
Taking into account the present experimental data, we
analyze possible input parameters for the model, in order
to obtain an acceptable phenomenological pattern for the
observed anomalous decays of the pseudoscalar and vector
mesons.

This paper is organized as follows: In Sect. 2 we intro-
duce the NJL Lagrangian and the bosonization technique.
In Sect. 3 we derive the effective Lagrangian to account
for vector and axial-vector meson interactions, consider-
ing the explicit breakdown of flavor SU(3) symmetry. This
leads to some relations between vector meson masses and
decay constants that can be written in terms of symmetry-
breaking parameters. Then, in Sect. 4, we concentrate on
the anomalous radiative decays of pseudoscalar and vector
mesons, which proceed through the U(1) axial anomaly. In
Sect. 5 we discuss the numerical results for the correspond-
ing branching ratios, in comparison with the present ex-
perimental information. Finally, in Sect. 6 we present our
conclusions. The appendix includes a brief description of
the regularization scheme used throughout our analysis.

2 Nambu–Jona–Lasinio Lagrangian
and bosonization

Chiral effective models have proved to reproduce the low
energy hadron phenomena with significant success. For
that reason, a significant effort has been made in order to
derive these effective schemes from a microscopic theory
like QCD. The effective four fermion Lagrangian proposed
by Nambu and Jona–Lasinio [6], which shows the chiral
symmetry of QCD, represents one of the most popular
ways to achieve this goal. The NJL model provides, af-
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ter proper bosonization, not only the expected effective
couplings for scalar, pseudoscalar, vector and axial-vector
mesons but also the Wess–Zumino–Witten sector [5] which
accounts for the anomalous meson decays. The explicit
form of the NJL Lagrangian reads

L = q̄(i �∂ − m̂0)q + 2G1

[(
q̄
1
2
λaq

)2

+
(
q̄iγ5

1
2
λaq

)2
]

−2G2

[(
q̄γµ 1

2
λaq

)2

+
(
q̄γµγ5

1
2
λaq

)2
]
, (1)

where q denotes the N -flavor quark spinor, λa, a = 0, . . . ,
N2 − 1 are the generators of the U(N) flavor group (we
normalize λ0 = (2/N)1/211) and m̂0 stands for the cur-
rent quark mass matrix, which explicitly breaks the chi-
ral symmetry. The coupling constants G1 and G2, as well
as the quark masses, are introduced as free parameters
of the model. In the absence of the mass term, the NJL
Lagrangian shows at the quantum level the SU(N)A ⊗
SU(N)V ⊗ U(1)V symmetry characteristic of massless
QCD.

It is possible to reduce the fermionic degrees of free-
dom to bosonic ones by standard bosonization techniques.
With the introduction of colorless boson fields and an ap-
propriate use of the Stratonovich identity, one obtains an
effective action where the fermions couple to the bosons in
a bilinear form. The couplings driven by G1 in (1) lead to
the introduction of scalar and pseudoscalar boson fields,
whereas those carrying G2 lead to the inclusion of vector
and axial-vector mesons.

To be definite, let us consider the vector meson sec-
tor with N = 3 flavors, u, d and s. By means of the
Stratonovich identity, the vector–vector coupling in (1)
can be transformed as

−2G2

(
q̄γµ 1

2
λaq

)2

→ − 1
4G2

TrV 2
µ + iq̄γµVµq, (2)

where Vµ ≡ −i
8∑

a=0

V a
µ λ

a/2. The spin 1 fields V a
µ can be

identified with the usual nonet of vector mesons,

V =
(−i)√

2
(3)

×




ρ0
√

2
+
ω8√

6
+
ω1√

3
ρ+ K∗+

ρ− − ρ0
√

2
+
ω8√

6
+
ω1√

3
K∗0

K∗− K̄∗0 −2ω8√
6

+
ω1√

3


 ,

which transforms in such a way as to preserve the chiral
symmetry of the original NJL Lagrangian (and therefore
that of QCD). Notice that the first term in the right hand
side of (2) is nothing but a mass term for the vector fields
V a

µ , thus the vector meson masses are governed by the
coupling G2 in the NJL Lagrangian. It can be seen that

these masses are degenerate in the limit where the quark
masses are degenerate.

Now, the quark fields can be integrated out, leading
to an effective Lagrangian which only contains bosonic
degrees of freedom. This procedure can be carried out by
taking into account the generating functional

Z = N
∫

DVDqDq̄ (4)

× exp
{

i
∫

dx4
[
− 1

4G2
TrV 2

µ + q̄(i �∂ − m̂0 + i �V )q
]}

and performing the calculation of the fermion determi-
nant (a detailed analysis can be found in [7]). A similar
procedure can be followed for the full NJL Lagrangian (1),
leading to the interactions involving scalar, pseudoscalar
and axial-vector bosons. In this way, the final effective
Lagrangian is written only in terms of spin 0 and spin 1
colorless hadron fields.

Here we have performed the bosonization by carrying
out an expansion of the fermion determinant, which gives
rise to a set of 1-loop Feynman diagrams [8]. In order to
build up the final effective meson Lagrangian, we have ob-
tained the local part of the relevant interactions by tak-
ing the leading order of a gradient expansion in powers
of the external momenta, and considering the dominant
contributions in 1/NC . The divergent integrals have been
treated using a proper–time regularization scheme with
a momentum cut–off, keeping the leading contributions.
The procedure is developed in detail in the next section.

3 Effective meson couplings
and symmetry-breaking parameters

In this section we describe the effective meson interactions
derived from the NJL Lagrangian. We begin by calculating
the relevant 1-loop self-energy diagrams contributing to
the meson kinetic and mass terms and those leading to the
effective weak and strong meson decay couplings. Notice
that the meson fields introduced through the bosonization
technique acquire their dynamics via the self-energy 1-loop
diagrams.

In our framework, the poles of the quark propagators
occur at the so-called constituent masses, i.e. dynami-
cally generated masses which arise as a consequence of the
spontaneous breakdown of the chiral symmetry. The con-
stituent masses appear as solutions of Schwinger–Dyson
self-consistency equations (gap equations), which are gov-
erned by the scalar coupling G1 in the NJL Lagrangian
(1). Here we will not concentrate in the scalar sector of
the model, thus the constituent quark masses, as well as
the pseudoscalar boson masses, will be considered as free
parameters.

Our main interest is focused in the anomalous radiative
decays of vector mesons. Nevertheless, we need to consider
also the axial-vector sector of the model, since the axial-
vectors mix with the pseudoscalars at the 1-loop level (P–
A mixing).
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Fig. 1. a One-loop self-energy di-
agrams for vector and axial-vector
mesons, b pseudoscalar–axial vector
mixing diagram, c pseudoscalar self-
energy diagram

3.1 Kinetic terms and masses of the spin 1 mesons

The generating functional (4) gives rise to effective kinetic
terms for the spin 1 vector mesons via 1-loop diagrams,
as shown in Fig. 1a. The analysis in the case of the axial-
vector mesons can be performed in an analogous way, with
the additional ingredient of P–A mixing given by Fig. 1b.

The loop in Fig. 1a gives a contribution to the vector
meson self-energy given by

iNC

∫
d4k

(2π)4
Tr

�k− �p+m1

(k − p)2 −m2
1
λaγµ

�k +m2

k2 −m2
2
λbγν , (5)

where m1 and m2 are the constituent masses of the quarks
entering the loop, NC is the number of colors, and the
trace acts over the flavor and Dirac indices.

As stated above, we will take only the leading order
in the external momentum p, which means that we will
need to evaluate the integral at p = 0 after extracting the
relevant kinematical factors. In this case, this is equivalent
to considering only the divergent piece of (5):

Π(V )
µν = I2(m1,m2)

[
1
3
(pµpν − p2gµν) +

1
2
(m2 −m1)2

]
,

(6)
where

I2(mi,mj) ≡ −i
NC

(2π)4

∫
d4k

1
(k2 −m2

i )(k2 −m2
j )
. (7)

As was previously mentioned, in order to regularize the
divergence we use the proper–time regularization scheme
[13] with a cut–off Λ, which will be treated as a free param-
eter of the model. Details of the procedure can be found
in the appendix. We obtain

I2(mi,mj) =
NC

16π2

∫ 1

0
dxΓ

(
0,

(m2
i −m2

j )x+m2
j

Λ2

)
.

(8)
From (6), the kinetic terms for the vector mesons in

the effective Lagrangian are given by

L(V )
kin = −1

4
2
3
I2(mu,mu)

×
[
ρµνρ

µν + 2ρ+
µνρ

−µν + ωµνω
µν + αφµνφ

µν

+ 2β
(
K∗+

µνK
∗−µν +K∗0

µνK̄
∗0µν

) ]
, (9)

where V µν ≡ ∂µV ν − ∂νV µ, and

α =
I2(ms,ms)
I2(mu,mu)

, β =
I2(mu,ms)
I2(mu,mu)

(10)

parameterize the magnitude of the SU(3) flavor symmetry
breaking.

The kinetic Lagrangian in (9) has been expressed in
terms of the vector fields in (3), with the additional rota-
tion

ω8 = φ cos θ0 + ω sin θ0,
ω1 = −φ sin θ0 + ω cos θ0, (11)

which diagonalizes the neutral sector. It is easy to see that
here the rotation is “ideal”, i.e., the spin 1 mass eigen-
states ρ and ω are composed by pure light u and d quarks,
while the φ meson is a bound state s̄s. The ω − φ rota-
tion angle is given by sin θ0 = 1/31/2. Slight deviations
from the ideal mixing condition will be considered below
to allow for the decay φ → π0γ observed recently.

The mass terms for the vector mesons are given by the
(Vµ)2 term in (2), plus a divergent 1-loop contribution
given by the second term in the square brackets in (6),
which vanishes in the SU(3) flavor limit. This leads to

L(V )
mass =

1
8G2

[
ρµρ

µ + 2ρ+
µ ρ

−µ + ωµω
µ + φµφ

µ

+ 2K∗+
µK

∗−µ + 2K∗0
µK̄

∗0µ
]

+ (ms −mu)2βI2(mu,mu)

× (K∗+
µK

∗−µ +K∗0
µK̄

∗0µ). (12)

Notice that (as expected) the mass terms turn out to be
diagonal in the (ω, φ) basis.

We proceed now to the wave function renormalization
required by the kinetic terms in (9). The vector meson
fields can be properly redefined by Vµ → Z

1/2
V Vµ, with

Z−1
ρ = Z−1

ω =
2
3
I2(mu,mu), (13a)

Z−1
K∗ =

2
3
βI2(mu,mu) = βZ−1

ρ , (13b)

Z−1
φ =

2
3
αI2(mu,mu) = αZ−1

ρ . (13c)

Then from (12) one obtains

m2
ρ = m2

ω =
Zρ

4G2
,

m2
K∗ =

m2
ρ

β
+

3
2
(ms −mu)2,

m2
φ =

m2
ρ

α
; (14)
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thus, the φ meson mass can be written in terms of the ρ
mass and the flavor symmetry-breaking parameter α. In
the case of the K∗, the corresponding mass relation in-
cludes both the parameter β and a quark-mass dependent
contribution that arises from the loop in Fig. 1a.

A similar analysis can be performed for the axial-
vector meson sector. By replacing γα → γαγ5 in the quark-
meson vertices in Fig. 1a, one finds

Π(A)
µν =

2
3
I2(m1,m2)

[
(pµpν − p2gµν) − 3

2
(m2 +m1)2

2

]
,

(15)
leading to the kinetic Lagrangian

L(A)
kin = −1

4
2
3
I2(mu,mu)

[
a1µνa

µν
1 + 2a1

+
µνa

−µν
1

+f1µνf
µν
1 + 2βK+

1 µνK
−µν
1 + 2βK0

1µνK̄
0µν
1

+αf ′
1µνf

′µν
1

]
(16)

and the mass terms

L(A)
mass =

1
8G2

[
a1µa

µ
1 + 2a+

1 µa
−µ
1 + f1µf

µ
1 + f ′

1µf
′µ
1

+ 2K+
1 µK

−µ
1 + 2K0

1µK̄
0µ
1

]
+ I2(mu,mu)

[
2m2

u(a1µa
µ
1 + 2a+

1 µa
−µ
1 + f1µf

µ
1 )

+ (mu +ms)2β(K1
+
µK

−µ
1 +K1

0
µK̄

0µ
1 )

+ 2m2
sαf

′
1µf

′µ
1

]
. (17)

As in the vector meson case, the Lagrangian is diagonal in
the chosen basis, where f1 and f ′

1 are obtained from the
U(3) states A8 and A1 through an ideal rotation. Notice
that both neutral and charged axial-vector boson masses
receive a contribution proportional to G−1

2 , which arises
from field transformations as in (2), plus additional (pos-
itive) contributions proportional to the quark masses. In
this way, the axial-vector mesons are in general expected
to be heavier than their vector meson counterparts.

Finally, we have to take into account the mixing be-
tween the axial-vector mesons and the pseudoscalars. This
requires the analysis of the pseudoscalar–axial vector cou-
plings and the pseudoscalar kinetic terms, given by the
1-loop diagrams in Figs. 1b,c respectively. The effective
couplings read

Lmix = −iI2(mu,mu)
[
2mu(∂µπ

0aµ
1 + ∂µπ

+a−µ
1

+∂µπ
−a+µ

1 + ∂µηuf
µ) + β(mu +ms)

×(∂µK
+Kµ−

1 + ∂µK
−Kµ+

1 + ∂µK
0K̄0µ

1

+∂µK̄
0K0µ

1 ) + q2αms∂µηsf
′µ
]
, (18)

while the pseudoscalar kinetic Lagrangian is given by

L(P )
kin = −1

2
I2(mu,mu)

[
∂µπ

0∂µπ0 + 2∂µπ
+∂µπ−

+∂µηu∂
µηu + α∂µηs∂

µηs + 2β∂µK
+∂µK−

+2β∂µK
0∂µK̄0

]
. (19)

Once again, we have chosen a basis for the neutral
fields in which the states ηu, ηs are obtained from the
U(3) states η8, η1 through an ideal rotation. However,
these states cannot be treated as approximate mass eigen-
states due to the presence of the U(1)A anomaly, which
breaks the U(3) symmetry down to SU(3). Although for-
mally of order 1/NC , this anomaly leads to a relatively
large mass splitting between the observed η and η′ physi-
cal states. Still, large NC considerations are shown to be
powerful enough to deal with the interactions of the η1
and η8 fields as members of an U(3) nonet. As stated, we
will not concentrate here on the pseudoscalar mass sector,
and consequently, on the U(1)A symmetry-breaking mech-
anism responsible for the η′ mass. In the NJL framework,
one way to proceed is to include the so-called ’t Hooft in-
teraction [14,15], which emulates the effect of the anomaly.
Instead of following this way (which means including six-
fermion interaction vertices) we will introduce the η–η′
mixing angle as a parameter of the model. Thus, we write
ηu and ηs in terms of the physical states as

ηu = cosϕP η + sinϕP η
′,

ηs = − sinϕP η + cosϕP η
′. (20)

In order to write the effective Lagrangian in terms of the
physical fields, one needs not only the relevant wave func-
tion renormalizations but also the diagonalization of the
P–A couplings. This can be achieved by means of the
transformations

P → Z
1/2
P P, Aµ → Z

1/2
A Aµ + CPZ

1/2
P ∂µP, (21)

where P = π, K, ηu, ηs, and

Cπ = i2I2(mu,mu)Zρ
mu

m2
a1

= Cηu
,

CK = i2I2(mu,mu)Zρ
(mu +ms)

2m2
K1

,

Cηs = i2I2(mu,mu)Zρ
ms

m2
f ′
. (22)

The wave function renormalization for the pseudoscalar
sector yields

Z−1
π = Z−1

ηu
= I2(mu,mu)

(
1 − 6m2

u

m2
a1

)
,

Z−1
K = βI2(mu,mu)

[
1 − 3

2
(mu +ms)2

m2
K1

]
,

Z−1
ηs

= αI2(mu,mu)

(
1 − 6m2

s

m2
f ′

)
, (23)

where the axial-vector meson masses can be read from
(17). As can be immediately seen from (16), the wave func-
tion renormalization for the axial-vector mesons is equiv-
alent to that performed in the vector meson sector, c.f.
(13). Using these relations and those in (14), the axial-
vector meson masses turn out to be constrained by

m2
a1

= m2
ρ + 6m2

u,

m2
K1

= m2
K∗ + 6mums, (24)

m2
f ′ = m2

φ + 6m2
s.
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Fig. 2a,b. One-loop diagrams accounting for weak decays of
pseudoscalar mesons

3.2 Weak and strong decay constants

We want to analyze the ability of the effective model un-
der consideration to describe the low energy behavior of
pseudoscalar and vector mesons. Let us begin by studying
some fundamental decay processes, in order to evaluate
the relevant decay constants in terms of the model pa-
rameters.

The pseudoscalar weak decay constants Fπ and FK

can be obtained from the 1-loop transitions represented
in Fig. 2, where P = π, K. As in the self-energy case,
these diagrams are found to be logarithmically divergent
and can be regularized using the proper-time scheme. We
will keep as before only the leading contributions in the
limit of vanishing external momenta, which amounts to
taking only the divergent piece of the loop integrals.

The decay constants FP are defined as usual by

〈0|Jµ5(0)|P (q)〉 = i
√

2FP qµ. (25)

It is easy to see that the contributions from Figs. 2a,b lead
to

Fπ = 2I2(mu,mu)muZ
1/2
π (1 + i2muCπ)

= 2I2(mu,mu)muZ
1/2
π

(
1 − 6

m2
u

m2
a1

)
, (26)

FK = I2(mu,mu)β(mu +ms)Z
1/2
K [1 + i(mu +ms)CK ]

= I2(mu,mu)β(mu +ms)Z
1/2
K

[
1 − 3

2
(mu +ms)2

m2
K1

]
,

where have made use of (22). In these equations, the first
terms arise from the graph in Fig. 2a, whereas the contri-
butions proportional to Cπ,K are due to the P–A mixing
diagrams. Using now (23), we end up with the simple re-
lations

Fπ =
2mu

Z
1/2
π

, FK =
(mu +ms)

Z
1/2
K

. (27)

Next, let us study the basic decay constants gρ, gK∗

and gφ, which account for the strong decays of the vector
mesons into two pseudoscalars. The decay constants can
be defined from the total decay rates according to

Γ (ρ → ππ) =
g2

ρ

4π
mρ

12

(
1 − 4m2

π

m2
ρ

)3/2

,

Γ (K∗ → Kπ) =
g2

K∗

4π
mK∗

16
(28)

V
q3

q2

q1
P

P

+
V

q3

q2

q1

P

A P

(a) (b)

Fig. 3a,b. One-loop diagrams accounting for strong decays of
vector mesons into two pseudoscalars

×
{[

1 − (mK +mπ)2

m2
K∗

] [
1 − (mK −mπ)2

m2
K∗

]}3/2

,

Γ (φ → KK) = Γ (φ → K+K−) + Γ (φ → K0K̄0)

=
g2

φ

4π
mφ

24


(1 − 4m2

K+

m2
φ

)3/2

+

(
1 − 4m2

K0

m2
φ

)3/2

 .

Notice that for the φ → KK width we have taken into ac-
count the mass difference between the neutral and charged
kaons. Though tiny, this mass difference becomes impor-
tant in view of the very narrow phase space allowed.

Within the effective model analyzed here, the decay
rates (28) are dominated by the 1-loop graphs shown in
Fig. 3. As before, we keep here the dominant, logarithmi-
cally divergent contribution, and the leading order in the
external momenta (the corresponding diagrams with two
axial-vector legs vanish in this limit). From the evaluation
of the ρ → ππ and ρ → a1π diagrams, and using (13),
(22) and (23), we find

gρ = I2(mu,mu)Z1/2
ρ Zπ (1 + i2muCπ) = Z1/2

ρ . (29)

In the case of gφ the evaluation of the dominant contribu-
tion is more involved, since the loop includes two different
quark propagators. The loop integral has the form

I3 ≡ −i
NC

(2π)4

∫
d4k

k2

(k2 −m2
u)(k2 −m2

s)2
. (30)

Once again the divergence is logarithmic, thus it is natural
to express the integral in terms of I2(mi,mj). However,
owing to the flavor symmetry breakdown, there is an am-
biguity at the moment of choosing the infinite part of (30).
Here we follow the criterion of respecting the natural hi-
erarchy given by the quark content of the decaying vector
meson; that means, we use the k2 factor in the integrand
to remove the m2

u pole. We have then

I3 → αI2(mu,mu). (31)

Taking into account the wave function renormalization
for the φ and K mesons, together with the correspond-
ing pseudoscalar–axial vector mixing, we end up with

gφ =
√
α

β
gρ. (32)
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Fig. 4a,b. One-loop diagrams accounting for anomalous de-
cays of a pseudoscalars and b vector mesons

In the same way we proceed for the case of the K∗
to two meson decay. Here, due to the SU(3) symmetry
breaking, the analogous of (29) for gK∗ leads to a relation
between gK∗ and gρ which can be written in terms of
Zπ,K and Cπ,K . In a first approximation, however, the
dependence on these parameters cancels and one can write

gK∗ � gρ. (33)

In this way, both the φ and K∗ strong decay constants
can be predicted in terms of the measured value of gρ and
the symmetry-breaking parameters α and β. The corre-
sponding numerical evaluation will be done in Sect. 5.

4 Anomalous radiative decays of pseudoscalar
and vector mesons

Our goal is to test the ability of this relatively simple,
NJL-like model to reproduce the observed pattern for the
anomalous radiative decays of pseudoscalar and vector
mesons once the breakdown of chiral symmetry is taken
into account. These decays mainly originated in the U(1)A

anomaly. In the framework of our model, they occur
through the well–known triangle graphs shown in Fig. 4,
which lead to an anomalous Wess–Zumino–Witten effec-
tive Lagrangian. The corresponding diagrams including
an axial-vector which mixes with the pseudoscalar meson
gives a vanishing contribution [16]. This can be seen, e.g.,
by looking at the effective anomalous Lagrangian obtained
by gauging the Wess–Zumino–Witten action, as shown in
[3].

The couplings between the vector mesons and the out-
going (on-shell) photons follow from the assumption of
vector meson dominance of the electromagnetic interac-
tions. In our framework, these couplings can be obtained
from quark-loop diagrams connecting photons and vector
mesons (see [7,11] for details). After the proper inclusion
of the symmetry-breaking parameters α and β, the V − γ
couplings read

jemµ = em2
ρZ

−1/2
ρ

(
ρµ +

1
3
ωµ +

√
2

3
m2

φ

m2
ρ

√
αφµ

)
. (34)

Let us begin by analyzing the decays of the neutral
pseudoscalars π0, η and η′ into two photons. These pro-
cesses arise at the 1-loop level from the triangle diagrams
shown in Fig. 4a. The diagrams are found to be conver-
gent, and the limit of vanishing external momenta can be
taken trivially. For π0 → γγ we get

Γ (π0 → γγ) =
α2m3

π

64π3

(
Z

1/2
π

2mu

)2

=
α2m3

π

64π3F 2
π

, (35)

where α is the electromagnetic fine structure constant.
This expression coincides with the result obtained in stan-
dard chiral perturbation theory [1]. In the case of η and
η′ decays to two photons, one has the additional problem
of η–η′ mixing. In our framework, instead of dealing with
the U(3) states η1 and η8, it is natural to work with the
ηu and ηs states defined above, which determine the fla-
vor content of the quark propagators in the loop. Taking
into account the corresponding pseudoscalar wave func-
tion renormalizations, we find

Γ (η → γγ) =
α2m3

η

64π3

[
5

3Fπ
cosϕP −

√
2

3Fs
sinϕP

]2

,

Γ (η′ → γγ) =
α2m3

η′

64π3

[
5

3Fπ
sinϕP +

√
2

3Fs
cosϕP

]2

, (36)

where, in analogy with Fπ and FK , we have defined

Fs ≡ 2ms

Z
1/2
ηs

. (37)

Now we analyze the radiative vector meson decays
V → Pγ. The corresponding widths can be conveniently
parameterized as

Γ (V → Pγ) =
αg2

ρ

24π
C2

V P

F 2
π

(
M2

V −M2
P

4πMV

)3

, (38)

where the coefficients CV P can be obtained from the loop
diagrams shown in Fig. 4b. Clearly, the evaluation of the
relevant triangle quark loops is entirely similar to that
performed for the P → γγ case.

For the processes ρ0, ω → π0γ we can use (13a), (27)
and (29) to eliminate the pseudoscalar and spin 1 wave
function renormalization factors. In this way the coeffi-
cients Cρ0π0 and Cωπ0 are simply given by

Cρ0π0 = 1, Cωπ0 = 3. (39)

The same procedure applies in the case of V → η, η′γ
processes, with the additional inclusion of the η–η′ mixing
angle and the flavor symmetry-breaking parameter α. We
have

Cρ0η = 3 cosϕP ,

Cωη = cosϕP ,

Cφη = 2Fπ sinϕP /(
√
αFs),

Cφη′ = 2Fπ cosϕP /(
√
αFs),

(40)

where ϕP is the ηu–ηs mixing angle defined in (20).
For the decays K∗ → Kγ, the calculation is slightly

more complicated due to the presence of different con-
stituent masses for the quark propagators in the loop.
The coefficients depend now on the symmetry-breaking
parameter β and the mass ratio λ ≡ ms/mu according to

CK∗+K+ = f(λ)Fπ/(
√
βFK),

CK∗0K0 = g(λ)Fπ/(
√
βFK),

(41)



L. Epele et al.: Radiative decays of mesons in the NJL model 537

where the functions f(λ) and g(λ) are defined by

f(λ) =
[
1 + 6λ− λ2

2(1 − λ2)
+
λ(2λ2 + 1) lnλ2

(1 − λ2)2

]
,

g(λ) =
[
1 +

λ lnλ2

(λ2 − 1)

]
. (42)

Finally let us consider the decays η′ → ργ and η′ →
ωγ, which can be treated in a completely similar way just
taking into account the spin 0 character of the decaying
particle when averaging over the initial spin states. Using
the same parameterization as in (38) we obtain

Cρ0η′ = 3 sinϕP ,

Cωη′ = sinϕP .
(43)

We have skipped in this discussion the decay φ → π0γ,
since the corresponding coefficient Cφπ vanishes in our
framework, owing to the purely strange flavor content of
the φ meson. However, in view of the present experimental
results, it is interesting to remove the ideal mixing angle
condition in the ω–φ sector allowing for a tiny nonstrange
component for the φ field. If this is parameterized by a
small mixing angle ϕV , one trivially gets [12]

Cφπ0 = Cωπ0 sinϕV = 3 sinϕV . (44)

The present experimental value for the branching ratio
φ → π0γ leads to a mixing angle ϕV of about 3.2◦ [12,17],
which does not represent a significant change in the other,
nonvanishing radiative decay widths involving φ and ω.

5 Model parameters and numerical analysis

In order to perform the phenomenological analysis of the
model, and to obtain definite predictions for pseudoscalar
and vector meson decay processes, it is necessary to es-
tablish a strategy, choosing a suitable set of parameters
to be used as input values.

Let us begin with the basic decay processes analyzed
in Sect. 3. Using the π± and K± weak decays, it is possible
to write the pseudoscalar wave function renormalization
factors Zπ and ZK in terms of the well-measured decay
constants Fπ and FK , which will be taken as input pa-
rameters. In the same way, the wave function renormal-
ization factor Zρ can be obtained from the phenomeno-
logical value gρ � 6 arising from (28). Now, from (8) and
(13a), we can relate gρ with the loop integral I2(mu,mu)
to estimate mu

Λ
� 0.26. (45)

Next we use the mass relations (14) to determine a phe-
nomenological acceptable set of values for the cut-off Λ
and the strange quark mass ms. A reasonable choice is

ms � 510 MeV, Λ � 1.2 GeV, (46)

which leads to mφ = 0.99 GeV (exp. 1.02 GeV) and mK∗

= 0.91 GeV (exp. 0.89 GeV), with a light quark massmu =

md � 310 MeV. The symmetry-breaking parameters α, β
and λ defined in the previous sections are then given by

α � 0.6, β � 0.76, λ � 1.6. (47)

Using the relations (32) and (33), the phenomenologi-
cal value of gρ, together with the results in (47) allows one
to predict the values for the strong decay constants gK∗

and gφ. In this way we obtain

Γ (K∗ → Kπ) � 44 MeV,
Γ (φ → K0K̄0) � 1.3 MeV,
Γ (φ → K+K̄−) � 2.0 MeV,

(48)

while the corresponding experimental values read Γ (K∗
→ Kπ) = 50.8 ± 0.9 MeV, Γ (φ → K0K̄0) = 1.51 ±
0.03 MeV and Γ (φ → K+K−) = 2.19 ± 0.03 MeV [18].
The results are in agreement with the predicted values
within an accuracy of a 15% level, which can be taken as
a lower bound for the expected intrinsic theoretical error
of the model.

As an alternative procedure, we could have derived the
values for Fπ and FK from the relations (23), where the
axial-vector meson masses can be taken either from (24)
or just as input parameters. For instance, with the chosen
value of mu we can obtain from (24) a prediction for the
a1 mass of about 1080 MeV [18]. This value is somewhat
low, but once again agrees within a 15% accuracy with
the present experimental result of ma1 = 1230 ± 40 MeV.
In fact, it is natural to expect the model to describe the
axial-vector meson sector only in a roughly approximate
way, due to the relatively high masses involved, the broad
character of the resonances and the admixtures with close
states with same quantum numbers. Hence we choose to
rely on the well-known low energy decay constants Fπ and
FK as our input magnitudes.

Finally, using the analytical expressions obtained in
the previous section, we can look at the model predictions
for pseudoscalar and vector meson radiative decays. In the
case of the decays involving η and η′ mesons, it is necessary
to fix two more input parameters, which can be chosen as
the decay constant Fs (or equivalently the pseudoscalar
wave function renormalization Zηs

) and the η1–η8 mixing
angle θP . The latter is related with ϕP by

ϕP =
π

2
− θ0 + θP , (49)

where θ0 � 35.3◦ is the “ideal” rotation angle introduced
above.

Our numerical results are shown in Table 1, where we
quote the values corresponding to four different sets for
Fs and θP , together with the present experimental widths
[18]. In order to get the theoretical results, we have used
the physical values for the pseudoscalar and vector me-
son masses entering (38). We have chosen the values of
Fs and θP that lead to a better agreement for the whole
set of decays, always having in mind that an intrinsic
theoretical error of at least 15% can be expected from
the NJL scheme. In general, we find that the best re-
sults for θP lie within the usually expected range between
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Table 1. Radiative decays of pseudoscalar and vector mesons. The second and third columns
show the model predictions for different values of the ratio Fs/Fπ and the η1–η8 mixing angle
θP . The present experimental values for the decay rates are quoted in the last column

Process ΓNJL (keV) Γexp (keV)

Fs/Fπ = 2 Fs/Fπ = 1.75 Fs/Fπ = 1.75 Fs/Fπ = 1.4
θP = −10◦ θP = −15◦ θP = −20◦ θP = −20◦

π0 → γγ 7.7 × 10−3 7.7 × 10−3 7.7 × 10−3 7.7 × 10−3 (7.7 ± 0.6) × 10−3

η → γγ 0.53 0.63 0.76 0.71 0.46 ± 0.04
η′ → γγ 4.97 4.48 3.79 4.16 4.28 ± 0.44
η′ → ρ0γ 108 89.5 71.1 71.1 59 ± 5
η′ → ωγ 10.0 8.2 6.5 6.5 6.1 ± 0.8
ρ0 → π0γ 85 85 85 85 102 ± 25
ω → π0γ 806 806 806 806 720 ± 40
ρ0 → ηγ 51 60 68 68 36 ± 14
ω → ηγ 6.6 7.7 8.8 8.8 5.5 ± 0.8
φ → ηγ 65.0 70.0 55.6 86.9 57.8 ± 1.5
φ → η′γ 0.30 0.46 0.52 0.82 0.30 ± 0.16
K∗+ → K+γ 62 62 62 62 50 ± 5
K∗0 → K0γ 160 160 160 160 117 ± 10

−10◦ and −20◦ [17,19], while the model seems to prefer
a rather large value for the ratio Fs/Fπ, higher than 3/2.
We quote for completeness the results corresponding to a
ratio Fs/Fπ = 1.4, favored by large-NC arguments [20],
which lead in this case to too large widths for the decays
involving η and φ mesons.

When varying Fs and θP , and comparing with the ex-
perimental values, it is found that an accurate agreement
for certain widths worsens the predictions in other cases.
Nevertheless, considering the relatively important intrin-
sic theoretical error of the model, it can be said that the
values in Table 1 show a phenomenologically acceptable
pattern for the pseudoscalar and vector meson anoma-
lous radiative decays. Our results are found to be of sim-
ilar quality to those presented, e.g., in [3], where the au-
thors start from a nonlinear sigma model, and [12] where
a different parameterization of the chiral-flavor symmetry
breaking is introduced (notice that several experimental
values have changed in the last years).

6 Conclusions

Starting from an effective 4-fermion NJL Lagrangian, we
have analyzed the phenomenology associated with anoma-
lous radiative decays of pseudoscalar and vector mesons.
The effective interactions between spin 0 and spin 1
mesons have been derived from the bosonization of the
fermionic theory through the evaluation of the relevant
quark loop diagrams, taking the leading order both in the
external momenta and 1/NC power expansions. The di-
vergent loops have been treated using a proper-time reg-
ularization scheme with a momentum cut-off Λ.

We have taken into account the breakdown of the chi-
ral symmetry considering constituent quark masses mu =

md �= ms. The departure of the effective couplings from
the global SU(3) flavor symmetry limit has been intro-
duced through the parameters α and β, which correspond
to properly regularized fermion loop integrals.

In order to perform the phenomenological analysis, we
have chosen a few fundamental input parameters, namely
the basic decay constants Fπ, FK and gρ, the ρ meson
mass, the momentum cut-off (or equivalently the light
quark mass mu), and the constituent mass of the strange
quark ms. We have also taken into account the physical
values of the pseudoscalar meson masses. To account for
the decays involving η and η′ mesons, this set has been
complemented with the parameter Fs and the η–η′ mixing
angle θP . We have shown that with the choice Λ � 1.2 GeV
and ms � 510 MeV this simple model leads to an accept-
able pattern for the vector meson mass spectrum, as well
as the branching ratios for the strong decays ρ → ππ,
φ → KK and K∗ → Kπ. The agreement is found within
a 15% level; this can be taken as a lower bound for the
intrinsic theoretical error of the model.

We have evaluated within this framework the branch-
ing ratios for anomalous radiative decays of pseudoscalar
and vector mesons. In the case of those processes involv-
ing the η and η′, the contrast between the predictions of
our model and the present experimental data is optimized
for a θP mixing angle between −10◦ and −20◦, in agree-
ment with usual expectations. On the other hand, we find
that the preferred ratio Fs/Fπ lies in the range 1.75 to 2,
which is a rather high value in comparison with the result
arising from large NC considerations. In general, taking
into account the relatively large theoretical error, we see
that the model leads to reasonably good predictions for
the main radiative pseudoscalar and vector meson decay
widths. The quality of our results is comparable to that
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obtained in previous works which use different effective
models and/or parameterizations for the flavor symmetry-
breaking effects.
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Appendix

The divergent integrals I2(mi,mj) have been regularized
within the proper-time scheme [13]. One makes use of the
relation

1
An+1 → 1

n!

∫ ∞

1/Λ2
dssne−sA, (A.1)

which holds for Λ sufficiently large. If we let Λ be a mo-
mentum cut-off for our theory, we have for equal masses
mi = mj

I2(m,m) =
NC

(2π)4

∫
d4kE

1
(k2

E +m2)2

→ NC

(2π)4

∫
d4kE

∫ ∞

1/Λ2
dsse−s(k2

E+m2)

=
NC

16π2Γ

(
0,
m2

Λ2

)
, (A.2)

where kE is the momentum in Euclidean space, and Γ (α,
x) is the incomplete Gamma function,

Γ (α, x) ≡
∫ ∞

x

tα−1e−tdt. (A.3)

In the case where mi �= mj , (A.2) can be generalized
using the Feynman parameterization

1
(k2

E +m2
i )(k

2
E +m2

j )
=
∫ 1

0
dx

1
(k2

E +B2(x))2
, (A.4)

where B2(x) = m2
i + (m2

j − m2
i )x. Using the same regu-

larization procedure as before one ends up with

I2(mi,mj) → NC

16π2

∫ 1

0
dxΓ

(
0,
B2(x)
Λ2

)
. (A.5)
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3. H. Gomm, Ö. Kaymakcalan, J. Schechter, Phys. Rev. D
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